Search results for "Bounded error"

showing 2 items of 2 documents

On the computational power of affine automata

2017

We investigate the computational power of affine automata (AfAs) introduced in [4]. In particular, we present a simpler proof for how to change the cutpoint for any affine language and a method how to reduce error in bounded error case. Moreover, we address to the question of [4] by showing that any affine language can be recognized by an AfA with certain limitation on the entries of affine states and transition matrices. Lastly, we present the first languages shown to be not recognized by AfAs with bounded-error.

Discrete mathematicsFOS: Computer and information sciencesComputer scienceFormal Languages and Automata Theory (cs.FL)Computer Science - Formal Languages and Automata Theory0102 computer and information sciences02 engineering and technologyerror reduction[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]01 natural sciencesBounded errorPower (physics)Automatonaffine automata[INFO.INFO-FL]Computer Science [cs]/Formal Languages and Automata Theory [cs.FL]010201 computation theory & mathematics0202 electrical engineering electronic engineering information engineeringnon-classical models of automatacutpoint languages020201 artificial intelligence & image processingTransition matricesAffine transformationcompact setsbounded error
researchProduct

Uncountable Realtime Probabilistic Classes

2018

We investigate the minimal cases for realtime probabilistic machines that can define uncountably many languages with bounded error. We show that logarithmic space is enough for realtime PTMs on unary languages. On non-unary case, we obtain the same result for double logarithmic space, which is also tight. When replacing the work tape with a few counters, we can still achieve similar results for unary linear-space two-counter automata, unary sublinear-space three-counter automata, and non-unary sublinear-space two-counter automata. We also show how to slightly improve the sublinear-space constructions by using more counters.

Discrete mathematicsUnary operationComputer scienceProbabilistic logic020206 networking & telecommunicationsComputerApplications_COMPUTERSINOTHERSYSTEMS0102 computer and information sciences02 engineering and technology01 natural sciencesLogarithmic spaceBounded error010201 computation theory & mathematics0202 electrical engineering electronic engineering information engineeringComputer Science (miscellaneous)020201 artificial intelligence & image processingUncountable setBinary caseInternational Journal of Foundations of Computer Science
researchProduct